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A procedure which takes”into account the aerodynamic
span effect is given for the determination of ~~e torsionaZ-

..

divergence velocities of monoplanes. .L—-----,--

The explicit Solutions obtained in s~veral chses
indicate that the aerodyntimicspan effect.Way ~nc.r?as? .___
the divergence velocities found %y means of the section-
force theory by as much as 17 to 40 percent. __—

It i6 found that the magnitude of the effect in- ..
creases with increasing degree of stiffness ta~er and @p-
creases with increasing degree of chord taper.

..—— .—
-...

By a slight &xtension of the present method.it is-----..G.—..-..-_=__.— -—
possible to analyze the elastic deformation-s-bf wings, ‘.
and the resultant lift distributions, before torsional

-.

divergence occurs. —

,
INTRODUCTION

--—.

This paper deals with the limiting case of the..kend- .ti__
ing-torsion flutter problem which occu”rsw_h_enthe flutter
frequency has the value zero. This a;pect of t-he--p-;;blem..,- ““,
has been formulated and dealt with, as a zr~blem..o~.
static torsional instability, by H. Reissner ~reference’”
1) in 1926. Reissnerfs treatment, as well as $b.elater
work on the general flutter p“r-ohlem.by’Theodorsen(ref- ---
erence 2), Loring (reference’3), and Bleakney (preference
4), assumes expressions for the relevan$’air forces-”@t,

.——. ,.

each section of the wing which correspond to the .a”ssump- ,-.:.
tion of two-dimensional flow.
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The purpose of-the y.re,s.entpaper is to investigate
the effect of this simplifying assutiptionby giving a
procedure for the analydi-kof the torsional-divergente
problem.which takes into.account the a.erod.ynadicspan -
effect. The developments are-based on-the theory of tor-
sion of straight rods and..o.n.liftiug-line theory for the
epanwise distribution of lift.

A rapidly convergent -processof i$eration is devised
for the solution,,ofthe.e.q,uationsof the..twotheories for
an elastically twisted wing. The metho”d””isapplied to
some typical examples and it is found that for a wing
with an aspect ratid of about six the aerodynamic span
effect modifies the torsional-divergence velocity-obtained
with the assumption of air forces of the”two-dimensional
theory by 17 to 40 yercent, depending .onthe elastic and
plan-form characteristics of the wing. “

!l!hisinvestigation, conducted at the Massachusetts
Institute of Technology, was sponsored.by, and comduc.ted
with financial assiet”ancefrom,the National Advisory
Committee for Aeronautics. ; .—
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SYMBOLS

wing span

wing.chord -.

root chord (CT = c/cR)““

angle Of attack before elastic deformation

angle of twist due to elasti~ deformation

section Iift(per unit span) . . ;
.

densi”tyof air

velocity of---flight .

profile constant (dcl/dc@

section ‘liftcoefficient (“’/Wac)

T
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f?a

G

GI

lR

s

IJJ

$

Y

G,kI,g

Y,a”

Yl

V,8,A

A,3,C

u

Sf

auxiliary lift func”tian (/ccl /mcR, ~“>V2m”cR
2 )

distance between c-e-nterof pressure,and elastic
a~is bf wing r-- —m-. ..: %--

value of e at root ‘(e* = e/eR)

modulus .of rigidity ““ “ ““

torsional rigidity of tiingsectioti%.“ “

value of I at root (I* s I/IB) =

projected wing area ..’ ———

dimensionless constant (mcR/4p) ~

~ ,(]~) , ._

torsional-divergent’eparameter

spanwise coordinate’d$asured.from wing-root in .
units of semispan ....=_._.J_ -.-T

aux~liary functions d“efineilin.equations”(86),
(87), and (91). . .. .

“constantsdefining taper Charac”t+r,i$ticsof wing .
(equation (16)) .,, ... . .. . ... ...“

auxiliary variable (1 - ay)
‘.,

constantg defined in eauatioas,(.2Q-);”(21).,and (24)

arbitrary constants

weighting coefficient”of Simpson”!srule

corresponding to section-force theory (as subscript.)

.-.. ,.

MATHEMATICAL FCELMULATION03’THE PRO~LEM
,.

,.

If a wing with an.initi.al.angle-of-~ttack distribu- .:.:-:
tion- ao(y) is subjected to a ,liftdistribution t(y)
per unit span and the requ~tant air force ldy, associ-

J

ated with a sFatiwiseelement.of the wing-’-actsat a d~s- “
.

.—.—-
tance from the elastic axis of the wing, a change of .
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angle Of=ttack $ takes place due ticthe torsional flex-
ibility of the wing. (See fig. 6.) The relationship be-
tween the additional angle of attack and the lift per
unit span is given approximately by the differential
ea,uation

(1)

L J

where y is a spanwise coordinate measured from the Wing
root in units of half span b/2, e is the dietance
between the center of pressure and.the elastic axis, and
GI is the torsional rigidity, It is known that this ap- .!
proximate equation neglects the e“ffevto< the spanvise

I

variation of twist on the stresses ad deformations of .
t-hewing, and that in a more accurate theory ea.uation(1)
wOuld.be replaced by a fourth-order differential ea-uation
for d. Since, however,“S11 G&lculatiohs of bhe diver-
ge-ricevelocity by reeansof the “section-forcetheotiyof u-
which the aut-hor~have knowledge a,rebased on ea.uation
(1) and the main purpose of this paper is the estimation
of-the aerodynamic span effect, it is thought that eatie- 1“
factory results may be obtained if the present calcula-
tions also are based on this equation.

.
It may be stated

that there are no essential !difficulties,in extending the
work of-this paper in the direction of refined procedures
for the determination of the elastic deformations.

An addition~~ relationship iS afforded by the lifting-
line integral equation

1

{

&w_} ,2,t(y) = me(y) y (Cxo+ d) -.*,
-1

where c iG the chord of the wing, p iB the den~ity of
air, V is the velocity of flight, and m is a profile
constant. The”notati.on $ is used in equation (2) to
indicate that the Cauchy principal value of”the integral -
is to be taken, according to the definition

.

.-

●

✜✎
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If an auxiliary lift function F(y) is defined as

(3)
---

—

where CJ(y) is the””conventional section-lift coeffi-
cient, equations-(1) and (2) can be written in the form —.

‘+[’”(y)%]+ ‘a‘*(Y)‘(y)=o (4)

1

f

.._
“F(y) + ~ dr dn—— = CLo(y)+ $(Y) ““- (5}\ C*(Y) IT ._i dn Y=m — . — ———-

.-

—

-.where v is a dimensionless parameter

m CR
u’ =——

4b
(6j’

.-

and $2 is defined by the relationship -
.

(2).~vam‘.2eR .RGIR~a z
—

In these equations cR represents the root..chordwhile

c~(y) is the ratio of the chord to the root chord,
_____ ~

c(y)“ C*(Y) = —
CR

—.

.

.

and analogous definitions apply to eR, e*, IR and I*. .

If the wing is restrained from twisting at the r.oQ$_
(y =0), and no end twi”stingmonie-ntsare applied> the. :
boundary conditions for the function d are

—. .—
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$(0) = o1
(8)

while vanishing of.,fi~ lift ELtthe wing tips leads to the
boundary conditions

F(*l) = o (9)

The determination of continuous functions F and
3 satisfying the simultaneous eouations (4) and (5),
together with the boundary conditions of eq,uation~(8)
and (9), constitutes the basic problem Of torsional di-
vergence. It-should be remarked that unless” d la an
odd function of y the three --boundaryconditions of
equation (8) do not,in general.,permita regular so~ution
for $. The physical expl.an~tion of this occurrence lice
in the fact that unless””t-liewingloading is ,ai~isymmet-
rical with respect to the wing rootith

1
restrai~t offered

by the<fuselage, in this formulation o the problem, is
equivalent to a cbn”centratwdtwisting moment, so that

d.ti
the function I — must have & di~continuity”~t the

. dy .
root (Y = 0). Also, since it is necessary that the
function l?(y) have a continuous derivative at inte-
rior points of the span”in order that the left-hand side
ofequation (5) be continuous, it follows that the func-
tion

f

1’
& .dF dn , , -.
Tr, dn y-~

-1

which represents the-so-called ‘rind”ucedangle of attacktl
must have a discontir+uousfirs~ derivative at the wing
root.

Equations (4) and (5) oarihe combined i-ntoa Ringle
integro-differential eauation by the Elimination of the
function d. Thus, if “e4<nation(4J .1s ~ntcgrat(’dtwice
and the bou~dary condition of..equation (6) -areimposed,
an expression for 3 can he determined in the form

--

c .,

I
—. -1

I

.,c
k

...,—

—

,

.-

—

.—

.

c .
%
*
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J
L

a(y) = i32 (lo)G(y, n)e*(n)T(n)d~’ .,

–1 —

where the function G depends upon the function I.*,aqd
the introduction”of equation (10) into ea.uation(5) gives
the form .,.. .

1

f

1

{

....... . _,.-..._
dF d~F(y.) + ~ .

$2 &(y,O)e*(0)F(~)dYs{O(Y”) (11)
c*(y) l-r ; dq y-q “-_l,- ..

If the function m. is not identically zero, ea-ua-
,tion (11), together with the boundary conditions of e ua-
tion (9), possesses,in general,a uniqu’esolution 7F(y .
It is known, however, that there exists an infinite set
of critical val~e~ of the parameter P for which no
solution to equation (11) exists. In addition, as P

P approaches one of these critical values, ~he magnitude of
the corresponding functions F(y) ~nd ~(y) increases
without limit. S:nceh B is -proportionalto the velocity
of flight, “thecritical values of P correspond to crit-
ical velocities at which a very’large (theoretically in-
finite) twisting force is experienced by the.wing. Thus “-
an accurate determination of the smallest critical vala~

. of P is desirable for purposes of structural wing de-
sign. The value of V Cvrregpc)n”di.ngto the smallest
critical valuepof P is designated as the torsienal-
divergence velocity. ,, . .

According to the theory of integro.-differentialequa-
tions the critical values of P for which no solution to
ea.uation(11) exists are identical with the values of .K-,
for which the homogeneous equation, ~r~th m. identically... .,
zero, possesses a solution. That is, a critical valu,eOf
@ corresponds to such a.critica~ave~o;~tY.of flight ~hai”. ““
an initially untwisted airfoil o,- may become de-

. . formed. In the present linearized theory the magnituqe
of the .defleo.tionin this case is of ufideterminedmagril--
tude beoause..of the homogeneity of equation (11) when

● a. = o.
“* .

G .-
The -fevious explicit deter~ina,..ionof the critical ““

valued f the parameter 13.were %ased -.nthe so-called

-. ,,

,

.—

.—:.

-..

—

. . .. .

-- .- .

,
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“section-force theory,11which disregards the aerodynami~
effect of finite span by neglecting the integral repre-
senting Khe induced”angle-of attack in eauation (5) (ref-
erence J’). In what follows,a brief”treatment of the
section-forceprocedure fs first given, aft-erwhich a
met-hodof successive approximation is presented for the
determination.of t-hetorsional-divergence‘fli’g,htveloc-
ity and of t-heform-of the corr”eti~ondingdeflection and”
lift”curves, according to.the lifting:line theory o“f
‘equations(4) and (5). Since the magnitude of the
torsional-divergence velocity is independent.of the ini-
tial angle-of-attack-distributeon, it “willhe assumed.
that-the wing is initially at-a zero angle of attack -
(aO(y) = o).

. .
.

SOLUTION OF THE PROBLEM ACCORDING TO SXCTIOH-l?O~CETHEORY..

If the integral.in equation (5) is neglected qncl UYI
initial zero angle of attack is. assumecl, equations (4]
and (5) become ,. .. .’,

d

[ 1
-,I*(y)w+flae*(y)E’(.y) = O

G dy
(12i

.,

These eqtiations,together with the bdundary conditions,.

are taken as the b~eis of the analysis of the prob’”lemof
torsional dfverg.enceaccor.d.i.ngtothe section-farce-the-.
ory. The boundary conditions of equation (9) are -not -
prescribed in this theory.

Introducing eq~tition’’(l”3)into equat”i.on(“12)leads
tO e.homogeneous d~fferen”5i’&etquation”in 4

.“

8.

.

,

●

✜
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d
~ [ 1I“(y) Q~y + ‘Sac*(y)e*(y)b(y) > 0 ‘ (15)

which together with the,homogeneous boundary conditions
of equation (14) is sufficient to determine the critical
values of the marameter S and the cor”respond.ingcritical
def.lectiorimodes.’,“(Seereference 1.) . ..

A Class of Explicit Solution~

The integration of equation (15) in closed form is
possible$-Zn particular, in cases when the.chord and
section stiffness vary according to the laws

c-(y) = e*(y) 1.=(1 - ay)y~
I*(Y) = (1 - ay)y2

J

where Yl and’ Ya ape”arkitirarypositive constants and
a is a positive constant less than unity. With-the qUb>
stitution ..

,-.=--—
l-ay=yl (17)

1

equation (15) becomes .

.

.
.

and if

Y2#2(Y, +l)

the solution is known to be of the form

I.-Yz

a(y)
a

= Y1 Z(
6Eyl ‘6
a )v

(18)

. .

,.

. .

.-

. ,:
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where z .isthe.general Bessel function of.order v..-
and v

and ,.

In the special causeswhen

the solution can be expressed in the form

2Y1+1

uy)=yl-’ .2
{
Asin(Xtigyl)+_Bcos (AIogYl)

]

,
where A and B are arbitrary cons%ante and

The solution ie evaluated explicitly in the
ing four .cases:

(20;

(21)

(22)

(23)

(24)

f’ollow-

1, Uniform choril,uniform stiff’ness (Y~ =Y~ = o).-

In this case eauation (15”)becomes

&2d+ $24=o
dya

.

and the general continuous solution having continuous
derivat~vee except at y = 0. iS of the form .

●
✼

-’

.J

,

.

-v

.—

\
,

, I
--

<,
6.

-.
.

-1I

(25)
,

(26)

,-.
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● where the first term has a discontinuous derivative at the
root. The boundary conditions of equation (14) require
that

co =
. and

(27) ---– .

~. .

COSB=O, (28)”

,

.

●

✎

✎

E~.’uation(28) indicates that equation’s(25) and (14)
possess solutions only vh~n -. —

——
. .,. >

$
= (2n + 1.)n

2 — (29)

where n is an integer. The smallest of the-sevalues,
$ = 7?/2, then corresponds to the torsional-divergence
velocity, and the corresponding deflection mode is of the ,
form. .

.

“’ a(y)
II

= A sin P y + B sin $y (30)

where A and B are aibitrary constants. ;

Equation shows that this mode may have both
symmetrical and anti.eymmetri.calcomponents, s-o”that ac-
cording to this theory the two halves of the wing de~lect
independently of each other. Moreover, according’to the “
sect-ion-farcetheory the symmetrical and ~n.tisymmet.rical
deflection modes correspond to the same critical flight
velocity. For this reasdn it wi~l be convenient in ‘this
section to consider only one-half of the wing. The golu-
tion of.the Froblem for the firs~ deflection mode then

-.

can be written i% the form

1
.— ._,- _..

.-

\

.-
. . . (32)-’

-.

.

.r-—

F(y) =“$(y) = A gin ~y

J“

.:-. —
.<

(~~ = o, Ya = 2).- If only one-half of the wing is con-—
sidere&, the general solution of “eauation (15) is obtained
from equation (23) in the form (see also reference 1)

. —

\

b
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.

‘(y)‘J+‘{ }A Bin” (~ “lOg Yl) + B “00s“(~ 10g Ylj (32)

where

and

(33)

.

The boundary oonditi.ons of equation (14) then require
that —...

B=O (34)
and .

tan [
A 10g (1 - a),1“=“2?! (35)

Equation (35) has an infinite number of eolutionG which
in conjunction with eouation (33) determine the critioal
values of B foi whiah a solution..tothe problem exiets.
A numerical evaluation of the
two degrees of taper:

solution is presented for

‘i”(+)

In this case the.smalles”t -rootof equ”ation(35), which
%ecornes ..

tan (A log 2) + 2A= .0

●

1

is found by a conventional method of successive approxi-
mations to be

A
.

= 2.546 .

and ea,uation (33) then gives the corr-esp~ndingcritical .
value of $,

P = 1.297 .. .—

The “firstmod: of deflection for .one-”half--thewing is
t-busdescribed by the equations .d

,.

r
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(b)
tip stiffness
root 9tiffness “1- (a=:)’‘z..- -..

For this case, which was evaluated in reference 1, the
solution for the fir~t mode is obtained in the form

13

(36)

.

$ = 1.016 ● .

1 (37}

F(y) = ~(y) =

*

$il’1
[ ( )]J
1.112”log l-~Y

. 56Y “-—

Linear chord;.”a:uadtiaticallydecreasing 8tiffness
(Yl =3;, Y2 .=.2),- The solution of e’q.uat”ion(15) is given
by equation (19) where v=x1/2 ‘.a”nd””-b-= 1, .----

.T-iiiti~asel
functions of order &l/2”are expr”es-~i~lein terms of the— ‘-
circular funotions, so that the general solution of e~ua-
tiOn (15) can :b~‘written“inthe form” “ - -.

.

~(Y)=*1@sin~3htBcos~YI) (38)

If the boundary condition t!(o) = o is imposed, .itfol=
lows that

E (1 - yl) =’ A$(y) = & sin 1 sin By (39)
a. - ay

.. . .

The boundary condition *-J(1)= Cl determines the criti”cal
values of ~ as the roots of the equation
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tan~+l”-a$”=O
a

Equations (13) and (39) determine th~ auxiliary lift
function. 1? in the form

(40)

In particular, if a = 1/2, eo that the tip chord is
one-half the root chord and the tip gtiffnesg is one.
fourth the root stiffness, the first deflection mode of
half the wi~g is described by the eauations

.

$ = 2.029 i 1.
F(y) = A gin 2.029 y

1“
(42)

d(y) .~ sin 2.029 y I
l’-$y

J

4. Linear chord, quar.ticallydecreasing
(y, = 1, Y~ = 4)*-

stiffness
The solution of equation (15) is given

by equation (23) in the”form

where
.

(44)

while the boundary conditions of equation (14) are satis-
fied if

B=O (46)

,

,

. .

.

%.
f

1

—

.

,

and the parameter A IS a solution of the equation
●

[ 1tanhlog (l-a) =~A , (46)

.

●
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In the case a .=1/2, where the tip :~ord is ,one-
half the root chord and the tip stiffness is one-sixteenth ... ..
the root stiffness”,”the following data are obtained for
the first defle’cti’ohm“odeof half the wing:..

.
.

,,

$ = 1,653 -.--
1.

‘(’)=A%’in‘2”’4’‘“’‘1--*Y)]1(47)

,,

A
a(y)=

[ ( )]J
2.946 log 1 - Lsin

(1 - ;y)’~
~Y.

Solution by a Method of Successive Approximations.

The determination af the smallest critical value of
the parameter @ and,of the corresponding f.un.ctio.ns‘. .
and t! from ea,uations(12) and (lF), in ca~es when the
solution of equation (15”)in closed form is .nOtrea~i~Y
obtained, is conveniently accomplished by a method of
successive approximations similar to a method associated.
with the names of Stodola and Vianello.

A convenient function ~~(’) is first chosen in
such a way that it satisfies the boundary conditions of
equation (14).: A function ~F”i’(Y”)is then determined bY
introducing this function into equation (13),

“l(y) = O*(y) *I(Y) - (48)—

If the function Fl is introduced.”intoequation (12),
the resultant equation

can be solved for ~ by direct integration. Suppose
that the solution of this eauation satisfying the bound-
ary conditions of equation (14) iS given ~Y

,——

. .

.-

.,

--
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L(Y).= eafil(Y)... (50)

If al(y) were the exact solutio-nof the problem corre-
sponding to a critical value of $, it would be possible
to choose p so that the ftinctlons 61 and ~1 are
identical. When this is not the case, an approximation
to the desired :critioazvalue of P can he determined if
it is required that the functions dl and Wa “agree as

IIwell as possible over the interval y < 1. ~hls”de~8r-
minatlon ie usually accomplished by requiring that the
two functions coincide at a suitably ohosen point y = yo,
so that a’first approxtm.ati.oat.o P is given by...... .,.

,,.

Ol(yo)
ql”(yo) (51)

A more accurate proc~d,ure.-proposed here conRi~lm in re-
quiring that’thg integral, over the span, of the”differ-
ence between the”functions al and 31 vanish, HO th&t\
a first appr”o’fimationto ~ is given by .

.
(52)

If a,co.nvenie.ntmultiple of T~(y) is treated as a

second approximation, $2(Y), the process can now be re--.
peated indefinitely, and it can be shown
ing ,value

./:ll*n(y) dy

1rJ-1 Q@ dy

gives the.smallest critical--valueof pa
ing function

.-

*

--

,

that the limlt-
—

.;

,

while the limit- .
--

.
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represents the corresponding twisting mode of the wing.
Since the amplitude of the function O is indeterminate
within the framework of the linear theory, it is conven-
ient at the beginning of each cycle to magnify the ap-”
proximation ~n-l given %y the preceding cycle so that
the initial approximatiafi dn in”each cycle ‘has a maxi-
mum amplitude of unity.

Rapid conver~ence of the proce~~ has been found if
the initial approximation al(y) is,defined as a suita-
ble multiple of the solution of equation (12) corresPon~- ““- ‘. .
ing’to a uniform distribution gf lift along the span, S0
that

. d
[

“ddl
I“(y) —

1
= (const.) X e*(y)

z dy
(53) “

AS an illu~”trationof this procedure;-the epecial
c“aseof a uniform wing for which

.

.J

.

?

.

c-(y) = e*(y) = I*(Y) = 1 (54)

is analyzed. As before, it is sufficient to consider only
one-half the wing. The initial approximation to fi ?s ...
determined by reFlacing F(y) by a constant in equation
(12), so that : -“

d2~l
= constant

dy2
(55)--” .

.

The solution of this equation satisfying the condi~ion~ ‘ ——

‘ a“ql)= o$(0) =
.(5 ;,

●

is fouqd to be

al(y) = ((80ns.t.) x y -‘~ ~2
2’ )

-.
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The constant is arbitrary and is conveniently chosen 60
that $1(1) = 1, It then follows that

01(y) = 2y - ya (58)

Trom equation (48) there+-follows

‘and the i.ntrocluctionof Fl(y) into equation (49) yirlda
the equation

d%l—= pa(y2- Zy)
dya s

(60)

.

.

-.—

.

.

Integrating equation (60) twice and imposin~ the boundary
conditions of equation (56), the”function 41 is deter-
mined as

(*ZFL(Y)=P ~Y-;Y3+&4 )
,

(61)

.

The condition

then gives the ‘firu.tapproximation to the critical value
of P,

l-lwhioh differs from the exact value, B = ~ = 1,5708) by
0.65 peroent. ,

●

If the cycle is repeated, starting with the initial
a“pproximatian

.0

..

.

1
..

.
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it iS found that

(,rJy)=p2 ~y+y=+~y=.~
i ).150 y= ,

and the.condition
1 1’

[
~a(y) dy =

f . . . . .. ...
~a(y) dy

“o “o
gives a second approximation to ~,

19

(65)

(66)

—.

.

(67) ,

$2 = 1.5718 J
whioh differs from the exact value by less than 0.07 Per-
cent.

>

.

Since the initial assumption for 3 in each cycle
was so defined that its maximum value (at y = 1) is unitY,
an estimate of the rate of convergence is afforded.%Y
comparing with unity the maximum values of the apPro~i-
mations Tn obtained after successive cycles. Thus, in “

the present example, equations (61) and (63) give ...

and equations (65) and (67) give

42 61
Ta(l)= fix-=160

1.005

. L----

If the successive approximations to 9 were deter- ‘
mined by the conditions

in place of the integral conditions used here, the valu~s

,.
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(69)
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i31= 1,5492 I
“>

pa = 1.5681 1,..

which differ f’romthe exact -value”by 1.38 percent and
0,17 percent,respectively, would be obtained.

A further illustration of the advant-ageof the in-
tegral”condition (equation (52)) over the con~ition
usually imposed (equation .(51))is afforded by a con-

,.

sid.erationof the fourth case treated in the ea”rlieryart
of this section (equation (47).). In this case the ini-
tial approximation-to d is of-the form

.-

and, using equation (48), eo,uation(49) becomeq

If equation (72) is solved, subject to the %oundary con-
ditions of equation (56), and the result, together ~i~h
equation (70), is introduced into equation (62) the first
approximation to @ is obtained as

@l = 1,664 (73)

This Value differs frorn”’theexact value p = 1.653 given
in eo.uation(47) by about 0.66 percent, If, in place of

* equation (6.2), the.equation

Tl(l) = 1
,, (74)

is used for the determination of 13,an approximation

111= 1.612 (75)

is oht%ined which differs fr’omthe exact value by about
‘ 2,48 percent.

r

.

L-

.

.

.

,.

r.

.—

9

*
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PROCEDURE TOR SOLUTION OF THE PROBLEM

TO LIFTING-LINE THEORY

Whtle a direct treatment of eauation

,. 21

ACCORDING

(~~)”by approx-
imate methods is possible, it is more.convenient; p~;tic-
ularl-y.in dealing with the,critical deflection mpides.,.*o
work w“~thequations (4) and (5) aridto proceed by a meth-
od of successive “approximationssimilar to t$ieprp-ce~ure
given in the preoeding section.. According-to the.lift.ing-
line theory the symmetrical and antisym~etrical deflection
modes correspond”,i“ngeneral, to different critical:flight
velocities. In what follows, the treatment,~s.restricted
to the symmetrical case and treatment of the antisymmetri-
cal case is left for future work. Attention then may be
restricted as before to one”-ha~fthe span (o<y <l).
Also, as in the preceding section, it is “assumedthat the
wings considered are initially at a zero angle of attack.

Starting with an initial assumption flI(Y),deter-
mined as before as the deflection corresponding to a Uni-
form distribution of lift along the span, ,qccor.ding.tO
the differential equation

d
[ 1,ddl.,—

dy I*(Y) ~ q (cOnst.) x e“(y)

..

(76)

and the boundary conditions all,(o)= 1~(1) 33’(1) = 0,
a function Tl(y) is next defined by equation (,5),.

. . .
and the boundary conditions

Fl(*l) = o (78)
‘i

.
.,

An approximate solution of this equation is COn~enientlY
obtained by a procedure given in reference gi wherein an
approximation to I’l(y) is ‘assumedin.the form -~~.. ..
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.

and the parameter B, Ao,, . ., As are determined by a
method of least squares.. The first terW of the approxi-
mation of equat.i.on(79) is included since, aa is shown in
reference 5, the contribution of that term to the induced
angle of attack has the required discontinuity in its
first derivative at the.root” (y = O),

If the function Fl(y) determined from equation
(77) is introduced into equ~tion (4), the resultant equa-
tion

,. . .. .

(90)

subject to the boundary conditions of equation (8) oan %e
solved for xl by-direct “integration,after-which the
first approximation PI to the critical value of $ Is
determined as before by the condition

1

J’ f
1

~l(y) dy = &(y) dy (81)
“o ●o

A check on the accuracy of this approximation can be
had by comparing the n~aximumvalues of=the functions “ill
and ~1, Thus if al is chosen in euch “a way that

.

●

.

—

*T

4

al(l) = 1 (82)

the degree of approximation attained is indicated by the
closenese of the approximation

. .-

(83]

12 neces~ary, the procees can be repeated indefl- .
ni.tely. However, in all the problems coneid.eredin this
ps.persatisfactory resulte are afforded by a ainglp cycle
of operations, That ie, the initial approximation dl

<

.

I
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determined from equation (76) is sufficiently similar to
the exact deflection mode that if the oondition Of eQua--

●
tion (“81)is satisfied, the two functions al and 41
agree closely over the entire span.

In case only a first approximation 1.srequired, the

1

value of the integral
f

~l(y) dy” which is needed in
“o

the determination of Bl can he fobnd without exp’lioitly
determining the function al(y). If equation (4) is
integrated twice and the boundary conditions

$(0) = I*(1) 79’(1)= o “(84)

are satisfied, the resultant expression -for 3 can be
written in the form

,
.

f

J.

o(y) = ,82. G(y,n),
0.

where the Green’s function G

., Lg(n)
, 1G(y,m) =

#Y)

and
.,

ex(q) J?(q)d~ , (85)

is defined by the equations

g(y) =
/ J I*(n).0

. It then follows from equation (85) that
, .

1 1 1

f
f [J

i
~l(y) dy=~a G(Y,h) dy} e*(~) Pi(n) dm?

“o “o }“o !

—

.r-

(86)
--

(87) “’

— -.

(85) “~ _.. =. ..
.
.-

and since
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#r
‘o

1

dy
.

(89)

equation (88 can be written in the form

1

H(y) e*(y) cly (90dy

where Y e
.

..
,

H(y) (

If equation
the relationship
p can be written

(90) is intr
determining
in the form

oduc
the

ed into equation (81),
first approximation to

(92)

J’o H(y) e*(y) ~l(y) Q

Equ
ned
f i’

ati
, c<
ti

on
an
s

(83), which aff~rds a check on the accuraoy
also be expressed in terms of the funcbian
noticed that, from equation (85),

t ai
i

—

.

,

,

1

G(l, n)

1

g(n) e

*(?-I) Fl (n)e

n) Fl(n) dn (93
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.

.

Thus equation (83) ca’nhe written in the ,form . .
. . .

1

/

. ------ ‘

Tl (l.) = 9,12 g(y) e+(y) Fl(y) d.y.~1 ~ ‘--i94i.
‘J. . .

9
●

where the function g .is defined -byea.uat.~o’n.(87).

The procedure’for obtaining a first approximation
ta”the small”est critical value of @ corresponding.!o.a
symmetrical deflection mod’ecan be ‘summarizedas follows:

(1) Determine $l(Y) fram eauation (76) and the
boundary conditions 31(0) = 1-(+) $;’(l)=.0, and deter-
mine the multiplicative constant sa that *1(1) = o.

(2) Determine Fl(y) from ea,uation(77) and the
boundary conditions FIT*l) = O by the procedure of
reference 5. .>_. ,,.. — -“

(3) Determine PI from’eauatian (92). A check on
the accuracy of the determination is provided by eauation
(94). .

,Ifgreater accuracy is desired, the function 31(Y)
is next deterrnin~dfrom. eq~ation (80) and the boundary.:
conditions ~1(0) = I*(1) *11(1) = O. A function aa(y)
is then defined as

,, ,
Fl (y-)” ‘---

*2(3’) = – .-
*1(1) ““ -,.

so that a2(l’),=1,, the corresponding fugctign .?’a(Y)is
determined as in step (2) of the p~e.cedingparakraph, and
a second approximation to 5 is determined as instep-.
(3). . ... .

It”may be remarked that the ent.i’repracess .c’anbe
carried out conveniently by numerical or.me~hanical met~-..
ods. .If the solution of equation (?7) is faund.by the .:
procedure o.~“reference5, values of the initial approximat-
ion ill.and ofthe-chord function c- are needed only -
at nine equally spaced points along the semispan. The .

.

.—

.

.. .

. .

.—

- .—-

-.

---

.—

-...
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values of the function I?l at the same nine points are
then determined from the data presented in reference 5 by
a purely numerical procedure requiring less than two hours
of time. If the values of the functions &*, H, and g
are tabulated at these points, the integrals needed in
equations (92)*and~(94) can be readily evaluated bY
Simpsonls rule, modified if necessary so as to take into... .
account the fact that the function

-.
Nl(yj” ‘La-ian i~fi- ““

nite derivative at the wing tip (y= 1). If the approx-
imation of equation (7’9)is used, such.a modified formula,
derived in the appendix, is of the form

J
1

r’g(Y) ~I(y) d-y= . Cfk ~(xk) ~~(xk)
0. ~~-”s”++f!:’”}~(’)“5) ‘=

where yk = k/8 and uk is the Simpsonls-ru.leweighting
coefficient associated with the point yk

2 4 2-
00 =& al =$ a2 == C3 =

ziza4=zI
\ (96)

4 ? 1 [
as =~ ae =~ 07 =— a= = —

24 , 24, 24 24 ,

The last term of e~,uation.(95) gives the correction due
,, to the fact that Tl (Y) has .an infinite derivative at

the point y = 1.

LIFTING-LINE ANALYSIS OF EXPLICIT!CASES

In order to illustrate the procedure of the preced- “
ing section. and to investigate the importance of the
aerodynamic span-effect, the cases analyzed in”a preced-
ing section according to the section-force .thsocyare now
reconsidered on the basis of the lifting-line theory.
Since only symmetrical deflections are tc be treated,
attention will be restricted to one-half the wing.

.

.

.

.-

.

._

●

✌

—
,
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In the numerical calc~la.tio_ns,i~tis assumed that
.

m c~ 1
LL=—-=z (9,7)

4b .

For’an untapered wing this value of w corresponds to-an
aspect ratio. . ,... ,..-, ..-’... .. ,-. ,.. --

,.
b “: ‘“““” . “. : “=—= m( =6) . (98j -
c

* while for the general case the corresponding aspect ratio
,, . . ...,—

ha/S, where S is ~he projected win”garea, is gi{en’by

ba
,.

m=., ,.- .. (99)

s $ ~; c*(y) dy
.

In partic~”lar:$..for a symmetrical wing with linearly
. tapering chord,

.

.

.- ..,,

C(Y) ~ _ ~ yc*(y) ,= ~ =
,..’

(loo) ““--
. .

it follows that ., -, ,-;.-’,.,
b2- ,
— =“- m.., ... -.,=, .— ;.(loi)S. -l .-a., ”,;’,.,. : ,.,.. . .-,--:—_..: ,... ,.-: *. ..—.-=.“- ...”.. . ..., . . .

,. ....- .. -.4
It should be”remarked that “t-heC“alculatio--nsco~tained

\

in this sec”tionwere made by retaining a larger number Of
s.ign.ificantfi..~.resthan are included in ,thedata presented.
Thus”if the calculatfoni:a.rerepeated on the basis of the _ ...
tabulated dataj the results may differ slightly from the
results giv,enhere: .<r .,,_ .,.-..-..-=--.”— ––-

1. Un~form”chord”,.uniform’s-ti”ffnes9‘(”c*=e== i*= 1)... —.—.-—.
The auxiliary functions H and g are determined from
ea.uations(91) and (87) in the form



28 NACA Technical Note Not 926

Ii(y)= y - ~ Ya (102)

and

g(y) =Y. - (103)

As in a preceding section, the .~.nitiqlapproximation 81
to the first symmetrical mode (for “O< y~ 1) IS deter. .
mined from equation (76) as

~~(y) = 2Y - Y2 (104)

Next the function TI i.kto he ~etermined from equation
(77) which becomes

(105)

,,
If the approximation of equation (79) is assumed, the pro-
cedure of referenoe 5 determine-s the constants as follows”:

B= 0.4298 A. = 0.2680 A,~=

1

1.2950-
(106)

A4 = -2.3442 A6=~b8286

The data needed for the computation of S3 according to
equation (92) and for the chea!clcalculationof equation
(94) are listed in table l.(a). Thug, according to equa-
tion (92), the quantity P’32 is the ratio of two integrals
of which the first is obtained by Simpsonts rule as the
weighted su’mof entr”tesin the fourth columns .

1

f

8zt$l(y) dy s a~ dl(Y~) = 0.6667 (107)
‘o k=O

and the second is obtained in virtue of equation (95) as
the sum of weighted products of.coyres~ondipg entries in
the second and fifth columns,

.,T.-
plus a.correction”-”ter-m-:,,

.

.

_—

.

,.

.

—

.

.

;“

.
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1.

f

. . .-.,...q....-..:. ----..-/ , --- - -~i.-v.. .

,x
H(Y) F“l(Y) d.y”:.,..“.j“~.~‘(y~):fil~kk”)“:““: “--~‘ -.,,.

“o . k=o :‘...”.“...’. . ,....:,,<.. ..... ..— ---
.:,, -’.-... . .. -.-.:.: ------- .,----d

+ (0.00506)(1.4773)(0.5000)= 0:1~”654’-””(108)
.. - .. .. ,. ., . ..-. ...-.

Equation (92) then gives; ~ _ ..
●.-. ------.:..... -—. L., -,r ... ,-

- \“”””’”

‘,. -.”--
:Pr= 4m032 .,,,....,..
,. , .-.. (109)

., ,,,.
..- “ P; =2.008 ‘ ‘-.. : > :..,.. .2 .-,..

In the same way”,the integral contained in equation (“94)
is evaluated as the sum of weighted products.of corre-
sponding ent,riesin the third and fifth colum.gsof !aple
I(a), plus a correction term:,.

. ...
1 ..

f

~.

‘I

-.
g(y) F1(Y) dy =,,. Uk g(Yk) F1.(Yk). . -.

0 ..--—
k=O . .----

. . ..- -, ..

+ (0.00506)(1.477’3)(1.0000) = 0.2479 (110). .

.

.

t

.

, Equation (94)then-gives
~ ,., . --~... ..,- .. ;..,.. . . . . _-..:... . ..:

., %(.2’)),=. 0.9994” . s -,, . . “-<~;l j. .

(While in “thepresent cas-e.”t.heintegrals in equations
(107), (108), and (110) can easily he evaluated directly,

-.

.

w-. -. -

—

.—

—.

the numerica~ method of :e.val-ua,tionjust outlined is par-
ticularly convenient in case the integrands have compli-
cated analytical expressions..orare deterW&ned grayhi.CallY.\-..._.. . .-*- - ..-,..... .

Since equation (92) requires that the ig>egral of
ajthe difference between.the successive approximations . ,

and T1 be zero and equation (111) showe that the two
curves agre,ealmost exac-tl~.att,hetip..and,further,
since both funotions vanish at the root and have zero —
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slope at the tip, it would appear that the agreement be- .
tween the two functions over the span ie such that the
process need not bk continued. The functions 41 and 1

xl would then be considered as the deflection and lift
modes corresponding to the critical valuq Bl
e.quqtion(109).

given in
— — —.

In order to verify the accuracy of this approxima-
tion the second approximation is now determined. The
function z~ (y) is obtained from equation (80) by direct
integration and iS tabulated in the sixth column of table
l(a). If the values of this function are divided by tho
value of the function at the tip, the corresponding values
of the function a=(y) = Jl(y)/ll(i) are obtained and
listed in table l(b). The parameters specifying the
function F2(Y) which satisfies the equation

.
—

are then found by the procedure of reference 5 as fOl-
10WS :

B = 003884 A. = 0-2624 A= = 1.4074

(113) “ “
A4 = -2.4319 A= = 1.8538. —.

The values of the function Fa are presented in table
1(%). .From.equation (92) the second approximation to ~
is found

,,
“2
Pa = 4.023

1

“.
. (114)

Pa =
J

2.006 ‘ .

and equation (94) gives the result ..—
I ..

Fa(i) s 1.0006 (115)

For final comparison, the values of the Eunction Fa(Y),
determined from ~2(Y) by an equation analogous to .
equation (80), are included in table l(b). 1

.
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* It &ay b~ sa%d,that, contrary to expectations, a less
rapid-rate of convergence of the .iterative.process occur?

1 if, ins”tea~of taking as the”initial approx-imationto the
deflection mode .th~So.lut.ionOf..equation(76j, the’solu--
.tion of the problem accprdihg to the section-force.tbeorY _* is taken as the initial approximation. The’results Of a
calculation based on this prooedure, with . ..

.- .

(116)

are presented in table l(c). while the value obtained
for $1,

Bl = 2.004 (117) ‘

.

.

.

. .

.

.

.

and the values of the function $2(Y) agre,eclosely with
the preceding results, appreciable differences are pres-
ent between the successive approximations $1 and- ~1
in this procedure. An indication of t’hefact that the
function given in_equa$ion”(l16) does not afford an at-,
curate approxima’cionto the ,actualcritical deflection
mode would be afforded, without a camplete explicit .eva~-
uation of the function z~, by the readily calculated,
value.of xl(1) for this soiution,

—

~1(1) = 0.9582 (118)

From these results three useful conclusions, which
will be further substantiated in the fOlleWing treatment,
“maybe drawn: ● , . ——...—

(1) The approximate deflection mode determ~ne~ as

the s“olut.ionof equation (76) is mare nearly in agreement , ..= .:.-..— . —._
with th.=.~.et:.~1mcfiethan is the mofie~redicted by the—.,... ...-..___....... —. ,—-.
s.c:’ci.5n-.:~”’.>v-vu Lhe!,:.y, .-.,—.-——.—— .— —

.
(2) The preseh% method of ene.lysig”“is’’no%,~_>phly—..-— — -...—.-..A..—

sensitive to the choice of ~;”’.!:.i~-.~,ialapproximation to..—.- .
the deflection mode as rega”rdst“hedeter-minat<o”n’of the
first ap.proximation to the critical value of P.
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,

(3)”If t91 is determined by ea.uation(92,)the degree—
of approximation attaine”din equation (94) affords ?

reasonably accurate &stimate of the agreement between the
initial appraximat~on dl and the actual deflect-ionmode.

If the res-ultspresented in equations (31) and (114)
are compared,.it is seen that the aerodynamic syan effect
is responsible for an increase of about 28 percent in the
predicted value of the torsional-divergencevelocity. In
figure 1 there is presente~ a comparison of the eucceseive
approximations #1, da, and 43 to the deflection mode,
and of the successive approximations F1 and Ila to the

corresponding lift-distributeon function. The mode

Oef = l?8f= sin ~ y preaicted by the section-forcb theory

is also included.

2. Uniform ohord, quadratically decreasing stiffness

‘1
aC* = 8* = I.,I* = (1 - ay) 1-..-The functions dl, H,.—.

and g are obtainpd fromeqti~-$~ns .~?6),(91)$ and (87)
in the form

H(y) =%

{
( )}

1
log;-(2-a)—- 1

YI

‘(y) = ${k” “’}

,

(121)

where yl = 1 - ay. These functions, together with the
function FI(y) determined from equation <77), are ;:al-
uated for a = 1/2 in table 2(-a)and for a = 5/6
table 2(b). .-

The’integrals contained in equation (92) are eval-
uated by the numerical method employed in the preceding

s
.

,

—

L

1

.-.

. .
—

.

.

.:.

I

t— :

.
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case and equation (92) gives, for a = 1/2,:

*

and, for a = 5/6,

.
.

From equation

and, for a = 5/6,.

--- ..-.,

.312= L2.919.
.,,

$1. = 1.7i18..
J,.,

,.
●

1=.2.007 ..pla ,.
.,

$1 = 1.417j

(94).there fbllows, fijr ~ =

F1(l) = 0.9973 ,

,..

~1(1) = 0,9877

● 33

..

(122)

-..

(123)
,,..

1/2,
.-
(124,)

(125)
.

. Since eauations (124) and (125) indicate a_satisfactory
agreement between the functions $1 and al in both
cases, it is concluded that the functions al. _.~1and. . ., .
afford reasonable.approximateons to the critical deflec-

. tion and lift modes and that the computed values of ~
. are sufficiently.accurate.

.-. . ----

.-..”_ .

If, in the-case a = 1/2, the ~nitial assumption al .
is taken to be proportional to the deflection mode ~~f

predicted by the section-force theory (equation (36)),

.

.

the value

is obtained
value given
culation in

PI = 1.703 (126)

and is seen to be in good agreement with the
in equation (122). However, the check cal-
this case gives the result , --. ___

“ “Tl(l)= 0.9309 . (127)
,..

4
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1

which result., if compared with equation (124), again in-
dicates that the deflection mode d~f does not afford eo
accurate an approximation to.the true deflection mode as
does the function defined by ea,uation(76).

The funations t91 and ‘T1 are represented graphi-
cally in comparison with the function ~~f = F~f pre-
dicted by the section-force theory, for the cases a = 1/2
and a = 5/6, in figures 2(a) and 2(b). If equations
(122) and (123) are compared with equations (36) and (37),
it is seen that the aerodynamic span effect is responsible
for increases of about 32 and 39 percent in the values of
the torsional-divergencevelocity for the cases a = 1/2
and a = 5/6, respectively.

3* Linear chord, quadratically decreasing Btiffness

1C*’= %*”= 1 - ay, 1* = (~ -“ay) The functions II
and g in this case are identical with the corresponding
functions in the preceding ease and are given in equa-
tions (120) and (121). From equation (76) the function
&1. ie determined in the.form

{
$1(Y) =-+ (l-yl) - (1 -a)2

a .(s’)}“28)
where’ y= G I.- aye The values of-the:funct~on~ ~m.,H,”
g, and 41, as well as the values””of R’l“determined
from equation (77), are listed at the ‘ninepoints needed
for the approximate integration $n table 3 for the case
a = 1/2, Equation (92) then determines the first approx-
imation:to e,

El,a 1= 5.637 ““ “ ,

J

(129)
B> = 2,374

while equation (94) gives
. . .

“ T3(1) = 0.9953 (130)

Equation (130) indicates that the results of the first
approximation are sufficiently accurate to justify ter-
minating the process.

1
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.-... - A.comparison of“equations (42) and (129)“:sliowsthat
‘the Iifting-.linethe”orypredicts,a divergence veloaity in
this cese whic~.is’.about.17 p,ercentihigh.e-r.,thaqth:e~?~eloc-
it.y.predLcted.bythe..section-forcethear.y. The def.1.ec-
tion an&lift .mo,des,acco~dingto the two ,t-beori’qsare
compared in figure 3* . . ,..Y -.. ., .:-... ~: _._...-.

..

4. Linear ‘chord.,quark.ical.lydecreasing s,ti:ffness

[c*.”=e*=l-ay, .I*= (1- ay)4]”;;“~$ti~~‘f’u”ncti-ons‘-d~l, H,,.. ,. -;.-:.”.. .._m__ -.....
and g are d’eterm”ined“fr’omequa”ti’ons“(76), (91), and
(87) as follow:””” .,”,-”””’ : “: ~~: ‘---,,-” “-~,.- ,. ,.:

______ .._
,-

.-

.“--—

H(y) = ~
6a

{,l+.a,(+-l) --3’(Y)}
., ., ----

“(132)

. .

L1“’g(y)+* - - “’l~“’ k .“‘{333)
“13 ;+j ...... . ,

........ . —., —:. .’.. — ,“
...

where y= = 1 - ay. The functions needed for the computa-
tion of P are evaluated in table 4 for the case a = 1/2.
From equation (92) the”’~pfirox~tiation

is .ob$ai.ne”d, :
,..

while the.che,ckcalculat.ion”ofequ”ation““(94)
*gives .... , , ~ .-.. ... . .:L..-..-”=.-I:”...:’.,;,=... ___

,..
xl(l) =.0..9997. : “ ‘“--:. (.135)..

,..
“., , ‘.”

.. ,.
and thus permits;a -termination,of the ~“te”rativ_eproq’e-ss..?
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The lift and deflection modes 01 and F1 are com-
pared with the corresponding results given by the section-
force theory in figure 4< A comparison of equaticns (134)
and (4’7)shcws that the aerodynamic span effect is re-
sponsible for an increase of 20 percent in the vaLue cf
the tcrsional-divergencevelocity..

8

Yor the.purpose of further verifying the ac~uracy of
the present procedure the same case has %een analyzed by
two other methods. First, if the initially assumed de-
flection mode is taken as a suitable multiple of the mode
predicted hy the section-force theory (.equat”ion(47)) the
approximation to ~ is obtained as

(136)

while equation (94) gives

&(l) = 0.9332
.

(137)

Second, if the assumed deflection mode is taken to be the
deflection corresponding to a uniform distribution Of
twisting moment along the span (eI’= constt) rat-her than

.1

the deflection corresponding to a uniform distribution of
.–.i

lift (x = const.) it is found that . .:

& 3.907

}

(138) ““
s~ = 1.976

and

31(1) = 0.956? (139)

●

A comparison of these results with equations (134) and
s (135) indicates that the deflection corresponding to a

uniform llft distribution is in closer agreement with the .

actual divergence mode,than is the deflection correspond-
ing to the Other assumptions. The remarkable agreement
between the computed values of P shows again that lnso- .
far as the determination of P is concerned the present
procedure is not extremely sensitive to the chcice of”the
initially assumed deflection mode. .

T
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5.
( )

Linear chor,d C* = e* = 1 - ~ y , discontinuous

section stiffness (fig.,5.)....As a final application of.?.
the methods of this paper. a symmetrical wing iEItreated.
in which the cho~d tapers linearly to a tip Value of one- ““”-‘
halfthe root tialuean-d-the section st”~ffness.&&i&e dis--” “,”
continuously, as indicated in figure”5. “3!h-eeval-ua~ioh-- ,-:=

at nine points of the functions H and -g- de”fin”e~”in -
ea.uations(91) and (87) was accomplished %y plotting”the .-.
f.~nctions 1 and. ~ t.oa large ecg~e on cross-

I*(y) r+(y)”
section paper and in each case counting the squares con-
tained between the corresponding curve and the ordinates
at y = O and y = yk, where k/8, k= 0,1,...,8.y~-=

If equation (76), which here takes the form.--.,,

d
[
I“(y) ~ 1, (=(const.)x 1 -*Y

)
(140)

~

is integrated twice and the conditions al(o) = ?91’(1)= o
are imposed, the function $1 can be written in the form”

y

Tg_”q+l ““-~ na .-
$I(j) = (const.) X 4 ,- d?l (141).- I+(n)0, -. .—

Thus the function $1 can be conveniently evaluated from

J~_y+l4 ~ Y2
the function

\
\~by graphical integration.

I*(Y) [
The’constant i=sdetermined; as’.b”~fo-re,“s0that 41(1) = 1..,

The values of the funotions e*, E! g, and $1 as
well “as““thevalues of the function El determined from
equation (7’7)by the procedure “ofr-e”fer-e-nce5,-ire pre-
sented in table 5. If equati,on_(92) is ~eva”luatedby the
method of approximate integra-t-ionu~sle-~’’i=nthe “~receding.
examples, .Z,vit is found that. .’. .— —

$12= 1.9321 ,
.

1

(142)
PI = 1.390

.
.:.

t

.. . . .



b

38 NACA.Technical Note No. 926
a

,

,,
Equati”bn”:(9.4)then gives

xl(l) = 0.9979” (243)
,.

so that, While extreme accuracy should probably not be
expected as regards the lift and deflection modes.in the
neighborhood of th’e’discontinue.ties~a satisfactory agree-
ment between the functions t$l and F1 is indicated.

.

According to the section-force theory the first ap-
proximation to the lift function F(y) ie given by

(144)

in which case e~.uation(92) gives, as a first approxima-
tion,

1P a = 1.364Sf

J

(145)

$Sf = 1.168
. ..

Comparison “Ofequations (142) and (145) shows that
the aerodynamic span effect is responsible in thie case
for an increase of about 19 percent in the predicted val-
ue of the divergence velocity. The lift and deflection
modes for.the two theories are compared in figure 5.

CONCLUSION

The results.of this’paper indicat-ethat neglect of
the aerodynamic span effect may lead to an appreciable
underestimation of the torsional-divergente velocity, the
difference between the values obtained wit-hand without
neglect of this effect amounting to 17 to 40 percent in
the numerical examples presented.

In view of the fact that the cases evaluated concern
only wings with a span of about six times the root chords
it seems-desirable to consider a“gre”atervariety of wings
and, in particular, to investigate the relationship be-.
tween the relative magni’tti”daof the aerodynamic span ef-
fect and the magnitude of.thjeaspect ratio.

.

s“’”

,
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.

.

An extension o.fthe present pr~,cedure.to the analysis
of antisymmetrical deflection m“odes,”as well as to the
analysis of the elastic deformation of wings before tor-
sion-aldivergence Occursl can be accomplished without es-
sential difficulty. ..-.. . ,.

3

Massachusetts Institute of Technology,
Cambridge, Iiass.,

A FORMULA 2?OR

—.— —-.—
Feb . 1943.

-APPENDIX

APPROXIMATE INTEGRATION -.

If the approximate value of the integral
.--.

J1

“f(x) ax ... (1)
o

is required, and if the function f(x) is of the form

f(x) = p(x) ~“ .’. (2j-””

wh,ere ‘p(x) is finite at x = 1, conventional formulas
such as Simpsonls rule fail to give accurate results due
to the fact that f(x) has an infinite slope at x = 1.
A modification’of Simpsonts rule which takes this faci
into acco”untis here derived for a nine-point weigbt~ng .
system.

Ifith:then~tation fk = f(k/8), Simpeonls rule gives

for the range o<x<3/4 --

3/4 ,
.’r {f(x)ax S* fo+4f1+ 2f2+4f3+2f4+4f5+ f*

‘o }

If, in the.range 3/4< K< 1,” the function f(x) iS
ap~roximated by the expression t ..,----........._

—
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,,.

(4)

the ~ons’tantg al , a2, and as can be determined so that
eauation (4) is a true equality at the ‘points x = 3/4
and x = 7/8 and so that the derivative of the difference
between the two sides of that ,eqaationis finite at x = 1.
lt then follows that “ ‘ - --, .

......-

al =fip(~) ““ - 1
aa =.- 4f6”+ 16f7 .-.(8.- 2fi) P(1)”(

f
a3 =;~2f6---,64,f7.+,:(32 - \\6~~) P(1)

J
With the approximation of.equation, (4),there follows

r1
1“”f(x)dxx~al+~ &+-

“3/4 “32 192 a3

or

(5)

(6)

,f”’1 ,.-

“{f(x)dx ~~ f~ + 4f7 + (:<T - 2) A};”; -(7)
“3/4 0..

Equations -(3) and (7) can then b= com%i.ned.t.ogive .
.-

r1, a

“1
f(’x)dxx 1“”ak f,(xk)+~

‘“o [1(WC4)““”f(x~
J’ .(8)”

k=o X=i

where Tk = k/8 and ‘~k is the “’weightingcoefficient
associated with the -point xk by-Simpsonfs rule. The
last term in eauation (8) is a correction term which takes
into account the fact that f(x) h~asan infinite deriva-
tive at the point x * 1.‘ ~ ,“

b

.,

.

.

.
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TABLE l.- DATA FOR UNIFORM WING
(~=m)

(aj B’irstApproximation

t+-l-+-
.125 .1172
.250 .2188
.375 .3047
.500 “.3750
.625 .4297.
.750 .4688
.875 .4922

1.000 .5000
. .

,

b-a“ dl”- 3?1 31
0 ‘o “0.2680 Q
.1250 .234.4 .3040” .2228
.2500 .4375 .’3848 .4263
.3750 .6094 ●4779, .6054
.5000 .7500 .5’518 ‘ .7545
.6250 .8594” .5857
.7500

.8691
.9375 .5760 .94’71

.8750 .9844 ..5157 .9889
1.0000 1.0000 (-J.. , .9994

“‘3+zAan= 1“04?73

(b) Second Approximatiori’ ~

Y 33”

o .0.
.125 .2229
.250 .4265
.375 .6057
.50Q .7549
;:625 .8696
‘.750 :9476
.875 .9895

1.000 1.0000
B +ZA2n = 1.4802

,2984 .2224
.3”806 .4258
.4764 .6~53
.5533 ,.~549,
..5,895 ..8699
.5803 .9481
.6185 ,9901

0 1,0006

(c) First Approximation with 02 = ~~f

.

1

.

.,

. .

.-

.

— —

Y’

0
.125
.250
.375
.500
.625
.750
.875

1.000

4=

o
.1951
.“3827
.5556
.7071
.8315
.9239
9808

1:0000

ml

0.2399
.2730
● 3507
.4435
.5211
.5622
.5614
.5083

0

T~
0.
.2109
.4044
,5758
.7194
.8306
.9067
.9478
.9582

-732

0
.2201
,4-220
,6009
,7508
.8668
,9463
.9892

1.0000
,

.

.

<
—
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TABLE 2w- DATA FOR,REGTAN~ULAR WING WITH QUADRAT~CALLY

Y,,

0
.125
●250
.375
.500
.625
.750
.875

1.000

.

.

r

Y“

o
.125
●250
.375
.500
.625
.?50
.875

1.000

TAPERING STIFFNESS
(:=’)

H

o
.1248
.2484
.3690
.4841
.5897
.6800
.7459
.7726

g.

o,
.1333
.2857
,4615
.6667
.9091

1.2000
1.5556
2.0000

al

o
.1616
.3215
.47’76
.6265
.7632
.8801
.9655

1.0000

0.2090 ‘o
*2376 - ,1217
.3069 ,2569
.3925 .4032
.4685 .5564
.5163 ‘ ,7089
,5290 .8484
.’4910 “ .9554

0 1.0000

B-hXA= = 1.4287 II

(
;

(b) I=IR l+ )
H

o
.1305
,2732
.4305
.6047
.7986

1.0124
- 1.2348

1.3801

0
.1395
.3158
.5455
,8571

1.3043
2.0000
3.2308
6.0000

0.
.0946
.1980
*3119
..4382
.5?’86
.7335
.8947

1.0000

0.1425
.1615
.2110
.2768
.3428
.3974
:4353
.4342

0

,.

t$~f= F~f

o
.0610
.1293.
.2185

. ● 3307
.4720.
.6484
-,8”541

. 1.0000
.

—

o
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TABLE 3m- DATA FOR LINEARLY-TAPERING WING WITH *

QUADRATICALLY TAPERING STI17FNESS .

~*

1.0000
● 9375
.~750
.g125
.7500
. 6g75
.6250
.5625
,5000

H ‘g

o 0
.124f4 . .1333
.24g4 .2g57

690
?+3

.4615
: Ul, .6667
.5gg7 .9091
.6goo 1.2000
.7459 1.5556.
.7726 2,0000

o
.125
.250
●375
.500
.625
.750
.q~

1.000

o.lg6t?
.2145
.27&j
.3490
● gt?o
z● 109

●3973
.3715

0

0
.1833
.3571-
.5192
.6667
● 7955

, .9000
.9722

1 ● 0000

0
.1492
.3094
● 4731
.6312
.774a
.ggog
.9704

1.0000
.

.!

● I

.,TABLE 4.- DATA FOR LINEARLY TAPERING WING WITH

QUARTICkLLY TAPERING STIR’FNESS
. . .

.

L~*
1.0000

● 9375
.8750
. t3125
.7500
.6875
.6250
.5625
*5000

i?I Y

tm-tb- 1! I

0
.125
.250
C375

o
.1333
.2wjg
:$;:

.@k5
1.0560
1,2~19
1.3333

0.1409
.1567
.2056
.2691

0 0
.o&?6 .0774
.1L358 .1626
.3066 .2491
:W: .3434

.4272
●7s91 .4g32

~ ● pg .5249.
. .5000

.

.500

.625

.750

.g75
1a000

.j21j’

.3485
93550
.3491

0

.

{
.0791 .9429
.6667 1.0000I r! I

llB+zAa=l.16$6tl
!J #l

a
r
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TABLE 5.- DATA FOR LINEARLY TAPERING WING WITH

Y’

o
.125
.250
.375
.500
.625
.750
.875

1.000

DISCONTINUOUS STIFFNESS VARIATION

1.0000
.93’75
.8750
.8125
.7500
.6875
.6250
.5625
.5000

,

4

.

H

o
.1172
.2188

1.0781
1.7813
1.8435
1.9041
1.9616
2.0038

II I

o
.1250
.2500

1.5000
2.7500
2.8927
3.0891
3.4061
4.3267

0 0.1455
.0656 .1582
.1200 “.2364
.5606 .3523
.9043 .4463
.9333 .4731
.9599 .4352
.9836 .3770

1.0000 .0

IIB+ ~Aan = 1.240(

45

C*41

o
.0615
.1050
.4555
.6782
.6417
.5999
.5533
.5000
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Fige.4,5
[

.

i

.

. .

.

?

I (: I
t 4

1.0 -.
I I I I I I I I

Figure4.-Liftanddeflectionmodem
forlinearlytaperingWing

with~l~rtioallytaperingstlffnesa.
.8– [==oR(+y), 1=1~(1-~y]4,~=+j

.6 /
/

A

.4
/’

f-
0’

.2
———-SMtim-fero9 WwY

0 II t448+ 4 3 *Y1

-b= I
1

n

——

—



, ,
A. . . .

. .

“T“ .
.+--’--j- ----->

1
Elasticaxis”’

I

4

.F .— —. --$——————+
I
I

-c--l

.

u.

(

Figure6.- S&etchofwing,showinglift

w

di.strilmtionand elastic Gdeformation.,,
m

,,
,,.


